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Molodensky-Badekas
Reducing the Consequences of Parametric 

Correlation in the 7-Parameter Shift

Presented by Noel Zinn of ExxonMobil

at the 26 February 2004 meeting of the

Americas Petroleum Survey Group

Houston, Texas

www.hydrometronics.com

•My presentation this morning is about the advantages of deriving Molodensky-

Badekas (M-B) multi-parameter datum shifts (transformations) over Helmert datum 

shifts in small areas where the Helmert parameters are highly correlated. 
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Topics 

• Statement of the issues

• Geographicals to Cartesians to Geographicals

• Heuristic explanation of correlation problem

• The Molodensky Model at the geocenter (Helmert)

• The derivation of a 7-parameter shift

• Monte Carlo correlation w.r.t. datum area

• The Molodensky Model at the surface (M-B) solves 

correlation problem

• Dilution of Precision (P7DOP)

• Conclusion

• Reversibility in Molodensky-Badekas (Appendix)

•(Brief preview of the topics.)
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Transformation Error

BA

B

A

The shift required depends on the location 

on the datum. It is not constant.

•We’ve all seen something similar to this graphic from the DMA .ppt.

•Two ellipsoids are shown, presumably WGS84 and one from a local datum.

•They are related by 3 geocentric translations.

•The fit at point “A” is great, but the fit deteriorates as one moves away from “A”.

•The shift required depends on the location on the datum.  It is not constant.
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Issues
• 3-D 3-parameter shifts are perceived as not accurate 

enough, even in small datum areas.

• 2-D MRE and interpolation software (e.g., 

NADCON, NTv2) are not widely supported.

• 3-D 7-parameter Helmert shifts are supported.  

• Do we derive 7-p Helmert shifts over small areas?

• Are these 7-p Helmert shifts really “better” than 3-p 

shifts in a small datum area?  Or “worse”?

• Is Molodensky-Badekas a good alternative for 

deriving a 7-p shift in a small datum area?

• Reversibility in Molodensky-Badekas.

•(Read and comment.)

•(Distinguish MRE and bi-linear interpolation.)
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Transformation Route

Geographical (φ/λ/ht) on Ellipsoid1

Geocentric Cartesian (X/Y/Z)

Helmert or M-B Transformation

Geocentric Cartesian (X’/Y’/Z’)

Geographical (φ’/λ’/ht’) on Ellipsoid2

See Appendix

See Appendix

•7-parameter shifts - be they of the Helmert or M-B variety - operate in the 

Cartesian, geocentric, XYZ domain.

•Typically, however, our desired inputs and outputs are geographical coordinates 

(latitude, longitude and height).

•There are well-known equations for transforming geographicals into Cartesians and 

Cartesians into geographicals. 

•You can find these equations in the Appendix.

•The rest of this talk will concentrate on the geocentric XYZ domain.

•Helmert and M-B transformations operate in XYZ.

•Helmert and M-B transformations may have fewer than 7 parameters. That is, some 

of the parameters may be zero.

•When only the 3 translations are involved, the Helmert transformation - used with 

the equations in the Appendix - are an alternative to the Standard and Abridged 

Molodensky equations that operate directly on geographical coordinates.
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•(Read)
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•In that Cartesian reference frame now, we see a compound transformation from the 

red frame to the green frame consisting of seven components.

9

Datum Transformation
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Translations (3 Parameters)

Movement of points along an Axis

∆X

∆Z

∆Y

•Three of those components are lateral translations in each of the three axes, X, Y, 

and Z.



11

11

Rotations (3 Parameters)

Movement of points around an Axis

εεεε ψψψψ

ωωωω

•Three rotations are possible, each around one of the three axes.
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Scale (1 Parameter)

Changing the distance between points

S

•Finally, a change in scale is possible.



13

13

Greenwich Astronomic Meridian

E 000°°°° 00’ 00.554” ?

RZ (NWL9D->WGS72) = 0.260” (pv) 

RZ (WGS72->WGS84) = 0.554” (pv)

•This may open a can of worms with a few British in the group today, but here goes!  

Many of you will recognize this sculpture on the Prime Meridian at Greenwich.  

The old observatory that housed Airy’s transit is to your back.

•If asked what the longitude is at the Prime Meridian, most would respond 0-0-0.  It 

was true that the Greenwich Astronomic Meridian was 0-0-0.  However, since the 

component of deflection in the prime vertical (the east-west direction) is about 5.7 

seconds w.r.t. the global satellite datums, the Greenwich Geodetic Meridian was 

about 5.7 seconds West (or about 100m difference at that latitude) in the WGS72 

system.  

•There’s more to the story.  Many of you will recognize the two rotations around the 

Z axis in the upper left of the slide.  The first was a correction to the old TRANSIT 

precise ephemeris (NWL9D) to bring WGS72 into alignment with Greenwich.  

Between WGS72 and WGS84, the BIH, the world’s timekeeper located in Paris, 

changed the astronomic meridian of Greenwich based on an adjustment of the 

deflections at about 70 observatories located around the world. We all know from 

British nautical history that time is intimately linked to longitude, hence the need 

for the adjustment. The result of this adjustment at Greenwich was a 0.554 second 

rotation around Z require to bring WGS84 into alignment with the BIH Zero 

Meridian, also shown above.

•So, what is longitude of the Greenwich Astronomic Meridian today?
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Geodetic Interpretation 

of the 7 Parameters w.r.t. WGS84

• RZ - change in longitude w.r.t. BIH Zero 

Meridian

• ∆∆∆∆X, ∆∆∆∆Y, ∆∆∆∆Z - lateral translations at the geocenter

• ∆∆∆∆S - change in scale of linear unit w.r.t. VLBI

• RX, RY - your guess!  Changes horizontal 

orientation w.r.t. CIO north.  The effects of these 

parameters are location-specific.  

•The Greenwich story makes the point that the 7 geocentric parameters are not mere 

numerical coefficients as in a Multiple Regression Equation (MRE).  They are 

parameters imbued with geodetic significance.

•We’ve already discussed rotation around Z, alignment with the BIH Zero Meridian, 

the longitude reference for WGS84.

•The delta X, Y, and Z relate to the center of the earth as best our gravity models 

can determine it.

•WGS84 uses the same linear scale as VLBI, which is different than TRANSIT, for 

example, and many local datums throughout the word.  Hence, the scale change 

parameter.

•The problem children among these 7 parameters are RX and RY.  In some sense 

they redefine north w.r.t. the Conventional International Origin adopted by WGS84.  

But their effect is very location specific.  These 2 parameters have - in the past -

been avoided in the published transformations among the global satellite datums.

•Again, the message is that most of these parameters have geodetic interpretations.  

They are not “just” numerical coefficients.
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X-Axis Near West Africa

X

Z

•Now, on to correlation among the 7 geocentric datum-shift parameters. 

•For reference the globe is draped over the Cartesian reference frame.

•We’ll concentrate on that area in the Gulf of Guinea off West Africa where the X 

axis intersects the ellipsoid.
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Longitude Correlation - West Africa

∆∆∆∆Y RZ

•Now we get to the heart of the problem with correlation.  

•Notice that one can change longitude in the Gulf of Guinea in two ways: (1) by a 

translation along the X-axis, and (2) by a rotation around the Z-axis.  In that local 

area they are equivalent.  
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Latitude Correlation - West Africa

∆∆∆∆Z RY

•Next, one can change latitude in two ways: either by (1) a translation in the Z axis 

or by (2) a rotation about the Y axis. In that local area they are equivalent.  
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Height Correlation - West Africa

∆∆∆∆S∆∆∆∆X

•Finally, one can change height in two ways: by (1) a translation along the X axis or 

by (2) a scale change. In that local area they are equivalent.  
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North Orientation - West Africa

•That leaves one parameter, a rotation around the X axis.  

•Its effect is to change the orientation of the local datum on the Gulf of Guinea at 

the X axis (shown as the red rectangle) w.r.t. north.
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North Orientation - West Africa

RX

•Here we see that process in the Cartesian frame.

•This is a useful feature.

•For example, in the 1980s I processed TRANSIT Doppler data collected on the 

Portuguese concrete monuments of the Camacupa datum in Angola.  I discovered 

that Camacupa had a scale change of 60 ppm and a north reorientation of about 5 

arc seconds w.r.t. the TRANSIT broadcast ephemeris.  One reason we have so many 

3-p datum shifts in our lease blocks along the Angolan coast is because of this scale 

change and these 5 seconds of reorientation.  It would be useful to represent those 5 

seconds by one or more parameters in the horizontal plane.

•This can be accomplished on one of the axes (as in the Gulf of Guinea) without 

changing the geocentric translations.  

•The Helmert rotations are geocentric, i.e., not in the horizontal plane.
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Harare, Zimbabwe

•Now, let’s move away from the X axis and the Gulf of Guinea to a point on the 

continent.  Harare is a place where all 7 parameters interact.  
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Five 3-Parameter Shifts at Harare

#2

• 0

• 0

• 0

• 21.2927

• 0

• -9.5105

• 1.8965

• ∆Xm

• ∆Ym

• ∆Zm

• RX”pv

• RY”pv

• RZ”pv

• ∆Sppm

DMA

• -143

• - 90

• -294

• 0

• 0

• 0

• 0

#3

• 0

• 0

• 0

• -5.8558

• 9.2754

• 0

• 1.8965

#4    

• 0

• 0

• 0

• 0

• 12.7939

• -3.6077

• 1.8965

#5

• 0

• -26.540

• 0

• 0

• 12.5529

• -2.7095

• 0

S 28-00-00.0000

E 31-00-00.0000

0.0000m

S 28-00-01.6119

E 30-59-59.8721

24.1673m

ARC 1950 WGS84to

•The location chosen is 28S, 31E and zero height in ARC1950.

•First, I took the DMA’s published 3-p shift for that area and computed the  WGS84 

coordinates shown here.  

•Next, I derived four other, equally-valid 3-p shifts from among the 7 available 

parameters.  You can verify for yourselves that they all work at that point.  These 

are position-vector rotations.

• In fact, many other 3-p shifts are possible.

•Notice that if two rotations are used - and it doesn’t matter which two - then the 

scale change parameter is obligatory to modify height.  Rotations work only on the 

surface of the ellipsoid.  Height changes are off the surface.

•But notice that if we include a translation - and it doesn’t matter which one - then 

we don’t need the scale parameter.  

•Why is this possible?  It’s possible because the problem is over-parameterized.  At 

a point, very different parameters have the same effect.  They are correlated at 

Harare just as they are correlated in the Gulf of Guinea.

•The questions we’ll address in much of the rest of this presentation are: (1) How

large of an area does it take to avoid adverse effects of this correlation? and, (2) Is 

there another way?
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2-D Angle-of-Cut Analogy

Why 30º ⇔ 150º ?

•The gray beards among us will remember the angle of cut guideline back in radio 

navigation days.  Why did we require an angle of cut between 30 and 150 degrees?  

Because the closer you get to 180 or 0 degrees, such as crossing a baseline or its 

extension, the problem becomes increasingly indeterminate.

•Technically, it’s a judgement about acceptable HDOP, the geometrical multiplier 

of range error in position error expressed as dRMS.  HDOP is related to the trace of 

the covariance matrix.  We’ll talk more about covariance and correlation matrices in 

this presentation.

•Which of the areas represented by the cones radiating from the geocenter is 

adequate for the job of successfully deriving a 7-p Helmert datum shift?

•Haven’t we decided that the red cone - which is analogous to the point in Harare -

is inadequate?  There are too many possibilities, too much correlation.  Is the blue 

cone adequate?  Or the green cone?  How much surface area in the local datum do 

we really need to derive a good 7-p solution?

•We’ll have some answers by the end of this presentation.
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Topics 

• Statement of the issues

• Geographicals to Cartesians to Geographicals

• Heuristic explanation of correlation problem

• The Molodensky Model at the geocenter (Helmert)

• The derivation of a 7-parameter shift

• Monte Carlo correlation w.r.t. datum area

• The Molodensky Model at the surface (M-B) solves 

correlation problem

• Dilution of Precision (P7DOP)

• Conclusion

• Reversibility in Molodensky-Badekas (Appendix)

•(Read)
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NGA Molodensky Model - 1

http://earth-info.nima.mil/GandG/datums/wgsdt.html

Seven-Parameter geometric transformation

MOLODENSKY Model

The transformation is between a non-global local datum and a 

geocentric global geodetic system. The rotations are to be 

considered about the three axes at the "initial" point of the 

local datum. The scale factor is also considered with respect to 

the initial point.

•These words are taken directly from the NGA web site cited.

•(Read)
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NGA Molodensky Model - 2

where "i" denotes any point common to the local datum and 

geodetic system and the (U',V',W') are the coordinates of the 

"initial" point of the local datum. The three angles correspond 

to the small rotations taken positive in the counter clock-wise 

mode, when viewed from the end of the respective axes (at the 

"initial" point) towards the origin. 

Note: When the "initial" point of the local datum (U',V',W') is 

not provided, assume values of (0,0,0).

•(Continue reading)

•When the initial point is at geocenter, the matrix equation given here reduces to the 

Helmert model.  Notice that the NGA uses “coordinate-frame” rotations.

•When the initial point is somewhere other than the geocenter, the equation here is 

commonly called the Molodensky-Badekas (M-B).

•The literature advises that the M-B initial (or evaluation) point be the barycenter of 

the Cartesian coordinates of the points in the local datum.  That is not obligatory.  It 

can be the fundamental point of the local datum, or it can be anywhere nearby.

•The barycenter is the mathematical average of the Cartesian coordinates of all the 

points in the data set.

•The barycenter has the advantage of reducing most correlations to zero.
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Topics 

• Statement of the issues

• Geographicals to Cartesians to Geographicals

• Heuristic explanation of correlation problem

• The Molodensky Model at the geocenter (Helmert)

• The derivation of a 7-parameter shift

• Monte Carlo correlation w.r.t. datum area

• The Molodensky Model at the surface (M-B) solves 

correlation problem

• Dilution of Precision (P7DOP)

• Conclusion

• Reversibility in Molodensky-Badekas (Appendix)

•We’ve seen the adjustment model.  Now, how do we derive a 7-p shift?
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Adjustment Inputs and Outputs

Adjustment Algorithm:

Least Squares
Kalman Filter

Observations

Geometry

Quality

Quality

Parameters

•The derivation of a 7-p shift in the XYZ domain is an adjustment of the coordinates 

of a common set of survey points in two datums that solves for the values of the 7 

parameters that relate them best in a least-squares sense.

•The observation equations (which we’ve already seen in the Molodensky Model) 

are linear, so no iteration is required.

•Like any adjustment our inputs are our observations (which are the coordinate 

differences), our geometry (which is the spatial relationship of the points in the 

design matrix), and the quality of the observation (the “accuracy” of our survey 

points).

•Our outputs are the parameters themselves and the quality of the parameters 

represented by the covariance matrix, which we’ll transform into a correlation 

matrix.
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Adjustment Inputs and Outputs

-1 T-1T
b

x = (A C
b

A) A C -1b

b
TC

x
= (A C -1A)-1

b (vector)

A (matrix)

C b
(matrix)

C
x

(matrix)

x (vector)

Least-Squares

Observation Equation Model

•Here are the actual linear-algebra equations that do the job.

•The coordinate differences are contained in the “b” vector.  

•The “A” matrix contains the design or geometry of the adjustment, the “angle of 

cut”, so to speak.

•“Cb” is the coordinate quality matrix.

•After least-squares processing as shown, the parameters are contained in “x”,

•And the quality of those parameters in “Cx”.
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Snippet of Derivation Code
% Populate the design matrix (A) and the observations vector (b)

for this = 1:pts

A(this*3-2, :) = [1  0  0  0          -Zfrom(this) Yfrom(this) Xfrom(this)];

A(this*3-1, :) = [0  1  0  Zfrom(this) 0          -Xfrom(this) Yfrom(this)];

A(this*3,   :) = [0  0  1 -Yfrom(this) Xfrom(this) 0           Zfrom(this)];

b(this*3-2) =  Xto(this) - Xfrom(this);

b(this*3-1) =  Yto(this) - Yfrom(this);

b(this*3)   =  Zto(this) - Zfrom(this);

end

% Define covariance matrix of the observations.  Assume 1-m SD error per axis.

Cb = eye(pts*3);

% Compute covariance matrix of the parameters. 

Cx = inv(A’*inv(Cb)*A);

% Solve for the 7 parameters.  Rotations are in radians.

x = Cx*A'*b

% Solve for post-adjustment residuals.

b2 = A*x-b;

% Solve for variance factor

vf = b2'*b2/(pts*3-length(x));

% Scale Cx by vf, solve for SDs of parameters and the correlation matrix

SD = (diag(Cx*vf)).^.5;

correlation = cor(Cx)

•This is a snippet of code run in Matlab or O-Matrix to do the job.  I offer it 

because, in these matrix-manipulation languages, the equations map almost directly 

into code, which you can see for yourselves.

•Notice the 7 columns that go into the “A” matrix.  One can solve for fewer 

parameters by knocking out one or more columns, as I did in the Harare case to 

solve for only 3 parameters.  Solving for fewer parameters (6 or 5) lowers 

correlation, which is a good thing.

•The quality matrix (Cb) is an identity matrix (eye), implying 1 meter of random 

error in each axis.

•Notice that, using the post-adjustment residuals, the code solves for the variance 

factor (vf), used to scale the covariance matrix (Cx), and then solves for the 

standard deviations.

•Finally, the code turns the covariance matrix into a correlation matrix with a 

function call to “cor” (noted in blue).
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Brief Review of Correlation
Normalizing the Covariance Matrix (Cx)

ji

ij

ij
σσ

σ
ρ =

high               moderate              low               moderate             high

-1 +10

•Because the benefits of the M-B over the Helmert for small-area derivations have 

to do with correlations, I offer a brief review of what correlation is mathematically.

•The correlation coefficient “rho” is simply the off-diagonal covariance “sigma_ij”

divided by the connected standard deviations on the diagonal, “sigma_i” and 

“sigma_j”.

•Correlation “rho” varies between -1 and +1.  Numbers near zero indicate low 

correlation, which is good.  Numbers near -1 and +1 indicate high correlation, 

which is bad.

•High correlation is diagnostic of “over parameterization” in an adjustment, similar 

to the situation I described for the Gulf of Guinea, where latitude, longitude and 

height changes could each be made in two different ways.

•Because of over parameterization at a point in Harare, I was able to solve for 

multiple 3-p shifts from among the 7 available parameters.

•High correlations are related to near singularity in matrix inversion, a “divide by 

zero” problem.  

•In Kalman filter terminology, this is referred to as “poor observability”.

•In least-squares adjustments, this is an “ill-conditioned” problem.  
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Topics 
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• Geographicals to Cartesians to Geographicals

• Heuristic explanation of correlation problem

• The Molodensky Model at the geocenter (Helmert)

• The derivation of a 7-parameter shift

• Monte Carlo correlation w.r.t. datum area

• The Molodensky Model at the surface (M-B) solves 

correlation problem

• Dilution of Precision (P7DOP)

• Conclusion

• Reversibility in Molodensky-Badekas (Appendix)

•Now we’re going to look at some correlation matrices and other numbers generated 

over differently-sized datum areas with both normally and uniformly distributed 

random numbers.

•This is called “Monte Carlo” analysis.
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Distribution of 1M Random Points

Ellipsoid Thirds Along Each Axis

XYZ

332688 333336 333758

335854 333009 332650

331458 333655 333592

•First I checked my random number generation technique by populating the world 

with one million uniformly-scattered survey points.

•Then I divided the world into thirds three different ways, along each of the three 

Cartesian axes.

•It’s interesting to note that if you divide a sphere’s diameter into thirds, the surface 

area of each of the two “caps” equals the area of the mid belt.

•If my technique were perfect (and, thus, not really random!) you would see mostly 

“3s” except for three “4s” at the ends.

•Instead, you see a pretty good random distribution.

•Notice, however, that along the Z axis there is a slight “bulge” along the mid belt -

the ellipsoid effect.
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Global and Continental Areas
Induced Datum Shift and a priori Errors

• ∆∆∆∆Xm

• ∆∆∆∆Ym

• ∆∆∆∆Zm

• RX”

• RY”

• RZ”

• ∆∆∆∆Sppm

• +700m

• -500m

• +200m

• -3”

• +5”

• -2”

• +3ppm

• X ±±±±1m 1σσσσ

• Y ±±±±1m 1σσσσ

• Z ±±±±1m 1σσσσ

•Next, we need a datum shift to solve for in the adjustment process.  

•So, I induced this shift while generating the survey points, which are uniformly 

distributed over the areas to be shown.  I chose a “worst case” 7-p shift.  Few - if 

any - datum shifts with so many large numbers are likely, though some may have 

individual parameters as large as these.

•After the (deterministic) datum shift I add 1-m, 1-sigma, normally-distributed 

random error on each survey point.  
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Entire World: Monte Carlo 
19 random points, 1-m SD / axis, 7 parameters as defined

RMS = 0.98, vf = 1.09, sduw = 1.04 

7P        SD       SDsc

∆∆∆∆X   699.674    0.233    0.243
∆∆∆∆Y  -500.062    0.232    0.242

∆∆∆∆Z   199.817    0.233    0.243
RX    -2.992    0.010    0.010

RY     5.006    0.009    0.009

RZ    -1.997    0.009    0.010

∆∆∆∆S     3.031    0.036    0.038

Correlation_Matrix

[ 1.00  0.00  0.00 -0.02  0.09  0.17  0.02]

[ 0.00  1.00  0.01 -0.08  0.01  0.03 -0.13]

[ 0.00  0.01  1.00 -0.17 -0.01  0.02  0.06]

[-0.02 -0.08 -0.17  1.00 -0.05 -0.11  0.00]

[ 0.09  0.01 -0.01 -0.05  1.00  0.13 -0.00]

[ 0.17  0.03  0.02 -0.11  0.13  1.00 -0.00]

[ 0.02 -0.13  0.06 -0.00  0.00  0.00  1.00]

•Now, the results!

•For this simulation I populated the world with 19 uniformly-distributed points in 

the first datum, induced the “worst case” datum shift just described, and applied 1 

meter of normally distributed error in each axis to the result in the second datum.

•Then I solved for the 7 parameters.

•Notice that the results under “7P” are close to the induced datum shift.  That’s 

good. The unscaled standard deviations of the 7 parameters are shown in the column 

under “SD”.  The scaled standard deviations are shown in the column under “SDsc”.  

Both are similar and comparable to the differences between solved-for and induced 

datum shift.  That’s good, too.

•Just above the parameters I show the RMS of the residuals, the variance factor (vf) 

and the standard deviation of unit weight (sduw), all about 1.  

•Finally, in the correlation matrix below, notice that, except for the main diagonal, 

which is always 1, the correlations are low.  This indicates good geometry.

•The message is that just 19 points uniformly distributed throughout the entire world 

gives a good derivation of 7 geocentric Helmert parameters.
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Hemisphere: Monte Carlo 
19 random points, 1-m SD / axis, 7 parameters as defined

RMS = 0.84, vf = 0.80, sduw = 0.90

7P      SD       SDsc

∆∆∆∆X   699.647    0.272    0.244
∆∆∆∆Y  -499.741    0.294    0.263

∆∆∆∆Z   199.523    0.302    0.271
RX    -3.020    0.009    0.008

RY     5.000    0.012    0.011

RZ    -2.007    0.011    0.010

∆∆∆∆S     3.020    0.042    0.038

Correlation_Matrix

[ 1.00 -0.01  0.07  0.00  0.21  0.02 -0.49]

[-0.01  1.00 -0.05 -0.19 -0.07 -0.61 0.00]

[ 0.07 -0.05  1.00  0.02  0.64 0.08  0.13]

[ 0.00 -0.19  0.02  1.00  0.02  0.08 -0.00]

[ 0.21 -0.07  0.64  0.02  1.00  0.12 -0.00]

[ 0.02 -0.61  0.08  0.08  0.12  1.00  0.00]

[-0.49  0.00  0.13 -0.00 -0.00 -0.00  1.00]

•Our second Monte Carlo simulation is for half the world, a hemisphere.  

•Notice that the 7 parameters themselves are still close to the induced shift.  The 

SDs have crept up only slightly.

•But now in the correlation matrix we’ve begun to see some real correlations, which 

I’ve marked in orange in the upper diagonal.  These are caused by the translations 

pairing with rotations in their effect on coordinates and the hemispherical geometry 

not completely distinguishing the two.  

•This geometry is analogous to the one-sided geometry of GPS - no SVs below the 

earth - and to poor VDOP and to vertical coordinates that are poorer than the 

horizontal coordinates.

•We should expect the numbers across the top (RMS, vf, sduw) to be about 1.  The 

differences with 1 seen here are simply a consequence of the small number of points 

in this simulation, both in their random error and in their distribution.  Another 

simulation could be greater than 1.  The greater the number of points, the more 

likely the standard deviation of unit weight will be close to 1.

•Still, a good result.
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“Australia-Sized”: Monte Carlo 
19 random points, 1m SD / axis, 7 parameters as defined

RMS = 0.85, vf = 0.83, sduw = 0.91

7P      SD       SDsc

∆∆∆∆X   698.919    1.202    1.095
∆∆∆∆Y  -501.506    1.696    1.544

∆∆∆∆Z   201.359    1.714    1.561
RX    -2.977    0.039    0.035

RY     5.052    0.056    0.051

RZ    -1.946    0.055    0.050

∆∆∆∆ 3.149    0.188    0.172

Correlation_Matrix

[ 1.00  0.01 -0.02 -0.00 -0.04 -0.01 -0.98]

[ 0.01  1.00 -0.17  0.01 -0.17 -0.99 0.00]

[-0.02 -0.17  1.00  0.03  0.99 0.17 -0.02]

[-0.00  0.01  0.03  1.00  0.03  0.01  0.00]

[-0.04 -0.17  0.99  0.03  1.00  0.17  0.00]

[-0.01 -0.99  0.17  0.01  0.17  1.00 -0.00]

[-0.98  0.00 -0.02 -0.00 -0.00 -0.00  1.00]

X

•For this simulation I chose a much smaller surface area, about the size of Australia, 

but centered in the Gulf of Guinea.

•First notice that the SDs for the translations have crept up to over a meter and the 

translation parameters are off by more than meter as well.  This is good news.  It 

means that our stochastic model is competently predicting actual results.

•One of the references cited at the end of the presentation, the excellent paper by 

Bruce Harvey, offers guidance on the statistical testing of these parameters.  

Hypothesis testing is not addressed (rigorously) in this presentation.

•Impressionistically, however, you may agree that there’s not much point in 

claiming a precision for these translations to anything better than a meter due to the 

metric size of the SDs.  Nevertheless, we’ve identified our “worst case” datum shift 

pretty well.

•Look now at the three numbers in the correlation matrix highlighted in orange.  In 

addition to the size of the area , another reason that they’re high is that this 

simulated area is centered around the X axis.  If the area were between axes, the 

correlations would be distributed among the other parameters.  

•The size of these correlations is related to the creeping size of the SDs as the area 

gets smaller.
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“Cyprus-Sized”: Monte Carlo 
19 random points, 1m SD / axis, 7 parameters as defined

RMS = 0.97, vf = 1.08, sduw = 1.04

7P      SD       SDsc

∆∆∆∆X   761.639   31.764   33.019
∆∆∆∆Y  -561.148   49.999   51.974

∆∆∆∆Z    96.197   61.947   64.394
RX    -3.374    1.027    1.068

RY     1.631    2.003    2.082

RZ    -0.027    1.617    1.681

∆∆∆∆S    -6.650    4.980    5.177

Correlation_Matrix

[ 1.00 -0.00 -0.00 -0.00 -0.00 -0.00 -1.00]

[-0.00  1.00  0.58 0.00  0.58 -1.00 0.00]

[-0.00  0.58  1.00  0.00  1.00 -0.58 -0.00]

[-0.00  0.00  0.00  1.00  0.00 -0.00  0.00]

[-0.00  0.58  1.00  0.00  1.00 -0.58 0.00]

[-0.00 -1.00 -0.58 -0.00 -0.58  1.00 -0.00]

[-1.00  0.00 -0.00 -0.00  0.00  0.00  1.00]

X

•Australia is big country and a small continent.  Our derivation there was reasonably 

successful at the meter level or so with 19 points of metric quality.  

•Now we push this process to the extreme with an area the size of the island of 

Cyprus, also centered in the Gulf of Guinea.

•Notice now that the SDs for the translations are in the tens of meters and the 

translations themselves are off just bad.  Again, this correspondence of stochastic 

model and parametric results is good news.  

•The correlations in red are rounded to two decimal places, so they are close to, but 

probably not exactly, 1.  These high correlations are between dX and scale, dY and 

RZ, and dZ and RY - exactly as we saw heuristically with the graphics in the Gulf 

of Guinea.

•The correlations in blue (0.58) are just the effects of the 1m of random noise on the 

survey points in this extremely small area.  Those numbers jump around from 

simulation to simulation, but the correlations in red are fixed at 1.

•The smaller the area, the greater the effect of survey-point quality on parametric 

results.  Survey point quality is magnified by poor geometry.



39

39

German North Sea

•Now we turn our attention to another small area, the German sector of the North 

Sea, pictured here, which is rich in oil reserves.

•The German North Sea is a 2.5 times the size of Cyprus.  

•It is not located on a Cartesian axis, but between them.
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Proposed German No. Sea 7-P Shift 
Geodetic Transformations (Single-Step)

EPSG geodesy parameters

Search Criteria: Germany - offshore North Sea.

#2 Transformation Code: Name: ED50 to WGS 84 

Source CRS: code = 4230 name = ED50

Source Ellipsoid:: International 1924

Semi-major axis (a) = 6378388

Semi-minor axis (b) = inverse flattening = 297

Target CRS: code = 4326 name = WGS 84

Target Ellipsoid:: WGS 84

Semi-major axis (a) = 6378137 metre

Semi-minor axis (b) = inverse flattening = 298.257223563

Data Source: EPSG Change ID: Rev. Date: 31-Dec-03

Information Source:

Area of Use: Germany - offshore North Sea.

Scope: Recommended transformation for Germany North Sea petroleum purposes.

Remarks: Approximation to better than 0.5m of transformation adopted in June 
2003.

•My interest in small-area 7-p derivations was re-ignited by a recent action of the 

EPSG Geodesy Working Group, the computation of a 7-p Helmert transformation 

for the German sector of the North Sea.

•This is a second transformation method proposed for the German North Sea sector.  

The first is the MRE equations authorized by a German agency.

•The EPSG Geodesy Working Group has derived the 7 geocentric Helmert 

parameters that best match the MRE results.  The intent of the EPSG is to provide a 

better match to the MREs with 7 parameters than the 3 translations alone provide.

•The EPSG have succeeded.  The 3 translations alone fit the MREs in the 1 to 2 

meter range.  The 7 parameters together fit the MREs at about half a meter.

•Software for 3 and 7 parameter Helmert transformations is widely available; 

software for the MREs is not.

•Consequently, the 7-p Helmert transformation is seen as a “practical” improvement 

by the EPSG.

•Nevertheless, I have technical reservations about the consequences of this proposal 

and the precedent it sets for others who may wish to do the same.
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Proposed German No. Sea 7-P Shift
Trf Variant: Version: EPSG-Ger Nsea

Transformation method: Position Vector 7-param. transformation

For Polynomial transformation methods only:

Unit Source Offsets: Unit Target Offsets:

Transformation Parameter Name Value Unit of Measure

X-axis translation -157.89 metre

Y-axis translation -17.16 metre

Z-axis translation -78.41 metre

X-axis rotation 2.118 arc-second

Y-axis rotation 2.697 arc-second

Z-axis rotation -1.434 arc-second

Scale difference -5.38 parts per million

Area of Use: Germany - offshore North Sea.

Scope:   Recommended transformation for Germany North Sea petroleum purposes.

Remarks:  Approximation to better than 0.5m of transformation adopted in June 2003 .

•Here are the 7 parameters offered by the EPSG, which are highlighted in orange.

•Notice the precision of the numbers.
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German North Sea

Induced Datum Shift and a priori Errors

• ∆∆∆∆Xm

• ∆∆∆∆Ym

• ∆∆∆∆Zm

• RX”

• RY”

• RZ”

• ∆∆∆∆Sppm

• 0m

• 0m

• 0m

• 0”

• 0”

• 0”

• 0ppm

• X ±±±±1m 1σσσσ

• Y ±±±±1m 1σσσσ

• Z ±±±±1m 1σσσσ

•Using the tools developed for this presentation, we’ll now analyze the quality of 

any 7-p Helmert shift derived for the German North Sea.

•At this juncture we make a important change.  Rather than inducing the “worst 

case” shift that we’ve been using heretofore, or even the EPSG shift itself, I induce 

no shift at all.

•Our expectation now is to simulate data as before, solve for the 7 parameters, and 

find all zeros!

•The random positional errors are the same as before.
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German North Sea: Monte Carlo 1 
19 random points, 1-m SD / axis, all 7 parameters = 0

Helmert with 7 Parameters

RMS = 0.79, vf = 0.71, sduw = 0.84

7P       SD       SDsc

∆∆∆∆X   -19.379   25.595   21.549
∆∆∆∆Y    10.495   19.159   16.131
∆∆∆∆Z    -0.541   19.138   16.113
RX     0.155    0.537    0.452

RY     0.474    0.959    0.807

RZ    -0.425    0.501    0.422

∆∆∆∆S     1.705    1.884    1.586

Correlation_Matrix

[ 1.00 -0.65 -0.69 -0.57 -0.96 0.55 -0.27]

[-0.65  1.00  0.56  0.91  0.67 -0.77 -0.04]

[-0.69  0.56  1.00  0.47  0.86 -0.47 -0.51]

[-0.57  0.91  0.47  1.00  0.58 -0.44  0.00]

[-0.96  0.67  0.86  0.58  1.00 -0.55  0.00]

[ 0.55 -0.77 -0.47 -0.44 -0.55  1.00 -0.00]

[-0.27 -0.04 -0.51 -0.00 -0.00  0.00  1.00]

56
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•Here is our first result.

•I used 19 points as before.  These are not the same MRE-match 19 points used by 

the EPSG, but they are chosen randomly within constraints in the same approximate 

area.

•Notice first that our 7 parameters are not zeros or even really close.

•Notice the size of the SDs, somewhat smaller than Cyprus, but still uncomfortably 

large.  Again, the SDs are competently predicting our failure to identify the induced 

datum shift.  Why is the adjustment failing?

•The reason is, of course, high correlation among the parameters caused by the 

small area of our data set.

•I’ve highlighted correlations more than 0.6.  Notice how widely distributed they 

are over the matrix now that we are between the axes.  

•Given the small size of the German North Sea relative to the world, our 7-p 

adjustment is “ill conditioned” and the results are poor.  It is a simple mater of 

geometry.  We are still too close to the situation in Harare with too many correlated 

parameters.  The problem can be (almost) solved in too many ways.  We’re “too 

close to the baseline”, so to speak.
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German North Sea: Monte Carlo 2 
19 random points, 1-m SD / axis, all 7 parameters = 0

Helmert with 7 Parameters

RMS = 0.97, vf = 1.07, sduw = 1.03

7P       SD       SDsc   

∆∆∆∆X    18.504   23.623   24.388
∆∆∆∆Y   -34.929   19.208   19.830
∆∆∆∆Z   -11.071   17.874   18.453
RX    -0.955    0.539    0.557

RY    -0.693    0.879    0.907

RZ     0.638    0.497    0.513

∆∆∆∆S     0.106    1.862    1.922

Correlation_Matrix

[ 1.00 -0.63 -0.65 -0.56 -0.96 0.54 -0.29]

[-0.63  1.00  0.54  0.91  0.66 -0.77 -0.04]

[-0.65  0.54  1.00  0.45  0.84 -0.44 -0.54]

[-0.56  0.91  0.45  1.00  0.58 -0.44 -0.00]

[-0.96  0.66  0.84  0.58  1.00 -0.54 -0.00]

[ 0.54 -0.77 -0.44 -0.44 -0.54  1.00  0.00]

[-0.29 -0.04 -0.54 -0.00 -0.00  0.00  1.00]
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•Here is a second simulation.  Slightly different points and slightly different errors 

in a random way.

•Notice how different the parameters are.

•Notice the high correlations.

•When an adjustment is ill conditioned, small changes in the data set can produce 

very different results, which we’re seeing here.

•Consider the precision of these parameters.
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Topics 

• Statement of the issues

• Geographicals to Cartesians to Geographicals

• Heuristic explanation of correlation problem

• The Molodensky Model at the geocenter (Helmert)

• The derivation of a 7-parameter shift

• Monte Carlo correlation w.r.t. datum area

• The Molodensky Model at the surface (M-B) solves 

correlation problem

• Dilution of Precision (P7DOP)

• Conclusion

• Reversibility in Molodensky-Badekas (Appendix)

•What do we do about this correlation problem in a small area?

•The answer is Molodensky-Badekas.
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NGA Molodensky Model - 2

where "i" denotes any point common to the local datum and 

geodetic system and the (U',V',W') are the coordinates of the 

"initial" point of the local datum. The three angles correspond 

to the small rotations taken positive in the counter clock-wise 

mode, when viewed from the end of the respective axes (at the 

"initial" point) towards the origin. 

Note: When the "initial" point of the local datum (U',V',W') is 

not provided, assume values of (0,0,0).

•This is a repeat of an earlier slide from the NGA.  Read the note at the bottom.

•When the initial point (U’, V’, W’) is (0, 0. 0) the Molodensky Model is the 

Helmert model that we are used, and have been analyzing heretofore.

•When the initial point (U’, V’, W’) is somewhere else, the Molodensky Model is 

what we are calling the Molodensky-Badekas.

•The literature advises that the M-B initial (or evaluation) point be the barycenter of 

the Cartesian coordinates of the points in the local datum.  That is not obligatory.  It 

can be the fundamental point of the local datum, or it can be anywhere nearby.

•An initial point at the barycenter has the advantage of reducing most correlations to 

zero.
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German North Sea

Molodensky-Badekas at Barycenter

Induced Datum Shift and a priori Errors

• ∆∆∆∆Xm

• ∆∆∆∆Ym

• ∆∆∆∆Zm

• RX”

• RY”

• RZ”

• ∆∆∆∆Sppm

• 0m

• 0m

• 0m

• 0”

• 0”

• 0”

• 0ppm

• X ±±±±1m 1σσσσ

• Y ±±±±1m 1σσσσ

• Z ±±±±1m 1σσσσ

•Again, I have not induced any datum shift into our Monte Carlo data.

•Our solved parameters in this local area of the German North Sea should be all 

zeros.
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German North Sea: Monte Carlo 3 
19 random points, 1-m SD / axis, all 7 parameters = 0

Barycenter Molodensky-Badekas with 7 Parameters

Xc=3654621.110, Yc=373231.167, Zc=5195307.741

RMS = 0.81, vf = 0.74, sduw = 0.86 

7P       SD       SDsc

∆∆∆∆X    -0.130    0.229    0.198
∆∆∆∆Y     0.070    0.229    0.198
∆∆∆∆Z    -0.025    0.229    0.198
RX    -0.794    0.570    0.491

RY    -1.747    0.953    0.821

RZ     0.674    0.525    0.452

∆∆∆∆S    -1.106    1.914    1.649

Correlation_Matrix

[ 1.00  0.00  0.00  0.00  0.00 -0.00 -0.00]

[ 0.00  1.00  0.00  0.00  0.00 -0.00  0.00]

[ 0.00  0.00  1.00  0.00  0.00 -0.00  0.00]

[ 0.00  0.00  0.00  1.00  0.61 -0.47 0.00]

[ 0.00  0.00  0.00  0.61  1.00 -0.57 0.00]

[-0.00 -0.00 -0.00 -0.47 -0.57  1.00  0.00]

[-0.00  0.00 -0.00 -0.00 -0.00  0.00  1.00]
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•Here are the results.

•Again, I used 19 points as before, chosen randomly within constraints.  These are 

not the same 19 points used by the EPSG, or any points that used before, but they 

are in the same approximate area.

•In addition to the same results as before you see the Cartesian coordinates of the 

barycenter just below the blue subtitle.

•Notice that the translations are, indeed, close to zero.

•Notice also that the SDs for the translations are also small, in fact, two orders of 

magnitude smaller than they were for the Helmert model.  For the translations this is 

a much better result.

•Notice now that the SDs for the rotations and scale are still large.  Although we are 

not addressing the issue of statistical testing in this presentation, these SDs are an 

appraisal of the sensitivity of M-B for the German No. Sea, of how large the 

rotations and scale have to be to correctly assess whether they exist at all.  Just 

because we get numbers for the rotation and scale parameters, doesn’t mean that 

they mean anything!  In this case a proper statistical test might reject the hypothesis 

that rotations and scale exist at all.

•Notice the correlation matrix.  All zeros now except those connecting the rotations, 

which I’ve highlighted in orange.
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German North Sea: Monte Carlo 4 
19 random points, 1-m SD / axis, all 7 parameters = 0

Barycenter Molodensky-Badekas with 7 Parameters

Xc=3653872.647, Yc=375185.984, Zc=5195534.393

RMS = 0.96, vf = 1.06, sduw = 1.03 

7P       SD       SDsc

∆∆∆∆X    -0.199    0.229    0.236
∆∆∆∆Y    -0.091    0.229    0.236
∆∆∆∆Z    -0.188    0.229    0.236
RX     0.163    0.546    0.562

RY     0.455    0.847    0.873

RZ     0.062    0.498    0.513

∆∆∆∆S     3.679    1.814    1.868

Correlation_Matrix

[ 1.00 -0.00 -0.00 -0.00 -0.00  0.00 -0.00]

[-0.00  1.00  0.00  0.00  0.00 -0.00 -0.00]

[-0.00  0.00  1.00  0.00  0.00 -0.00 -0.00]

[-0.00  0.00  0.00  1.00  0.60 -0.48 -0.00]

[-0.00  0.00  0.00  0.60  1.00 -0.56 -0.00]

[ 0.00 -0.00 -0.00 -0.48 -0.56  1.00  0.00]

[-0.00 -0.00 -0.00 -0.00 -0.00  0.00  1.00]
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•Here’s another simulation with slightly different points.  Pretty much the same 

result within a couple sigma.

•Regarding the sensitivity of this technique, remember my story about the 

Camacupa datum in Angola about a scale change of 60ppm and north reorientation 

of 5 seconds w.r.t. to the broadcast ephemeris.  This M-B technique is plenty 

sensitive to detect those changes confidently.  Additionally, Angola is a larger area, 

meaning better geometry, meaning smaller SDs.
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Proposed German No. Sea 7-P Shift
Trf Variant: Version: EPSG-Ger Nsea

Transformation method: Position Vector 7-param. transformation

For Polynomial transformation methods only:

Unit Source Offsets: Unit Target Offsets:

Transformation Parameter Name Value Unit of Measure

X-axis translation -157.89 metre

Y-axis translation -17.16 metre

Z-axis translation -78.41 metre

X-axis rotation 2.118 arc-second

Y-axis rotation 2.697 arc-second

Z-axis rotation -1.434 arc-second

Scale difference -5.38 parts per million

Area of Use: Germany - offshore North Sea.

Scope: Recommended transformation for Germany North Sea petroleum purposes.

Remarks:  Approximation to better than 0.5m of transformation adopted in June 2003.

•Roger Lott, the former chair of the EPSG Geodesy Working Group, generously 

shared with me the actual 19-point data set he used to derive the parameters above, 

highlighted in orange.
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German North Sea: MRE Match 
19 MRE points, no induced random error

Helmert with 7 Parameters

RMS = 0.118, vf = 0.016, sduw = 0.126

7P       SD       SDsc

∆∆∆∆X   -157.893   24.889    3.145
∆∆∆∆Y    -17.164   19.882    2.512
∆∆∆∆Z    -78.412   18.614    2.352
RX      2.118    0.554    0.070

RY      2.697    0.929    0.117

RZ     -1.434    0.511    0.065

∆∆∆∆S     -5.380    1.871    0.236

Correlation_Matrix

[ 1.00 -0.66 -0.67 -0.59 -0.96 0.57 -0.27]

[-0.66  1.00  0.57  0.91  0.68 -0.78 -0.04]

[-0.67  0.57  1.00  0.48  0.85 -0.48 -0.52]

[-0.59  0.91  0.48  1.00  0.61 -0.47  0.00]

[-0.96  0.68  0.85  0.61  1.00 -0.57  0.00]

[ 0.57 -0.78 -0.48 -0.47 -0.57  1.00 -0.00]

[-0.27 -0.04 -0.52  0.00  0.00 -0.00  1.00]
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•I ran those 19 EPSG points through the same software as before with no induced 

datum shift (obviously) and no induced random error.  These parametric results 

agree exactly with the EPSG.  Notice that the RMS, vf and sduw numbers are low.  

This may be impressive to some.

•Both the Helmert and M-B 7-p derivation techniques are intended to relate real 

survey points with real errors (both biases and random) in one datum to those same 

points surveyed in a different datum with (probably) different methods and, no 

doubt, different errors.  In this EPSG case, however, we are not adjusting the survey 

points themselves, but a mathematical abstraction.  That abstraction is the MREs for 

the German North Sea, which were derived from the original survey points and 

which mask the errors of the original survey points.

•Aside: original (geo-stationary) StarFix “pseudo ARGO” output anecdote. 

•It might be argued that the MREs are “authoritative” since they are sanctioned by a 

German agency, and therefore correct by definition or by agreement.  But that is an 

axiomatic argument, not a technical argument.  We shouldn’t confuse the two and 

we shouldn’t promote questionable geodesy for expediency.  It sets a bad precedent 

for others less careful than the EPSG.  

•Finally, notice that correlations are high and notice that neither the unscaled or 

scaled SDs support the numerical precision reported by EPSG - by orders of 

magnitude.
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German North Sea: MRE Match 
19 MRE points, no induced random error

Barycenter Molodensky-Badekas with 7 Parameters
Xc=3655727.054, Yc=373465.142, Zc=5194453.8

RMS = 0.118, vf = 0.016, sduw = 0.126

7P       SD       SDsc

∆∆∆∆X   -107.055    0.229    0.029
∆∆∆∆Y    -97.928    0.229    0.029
∆∆∆∆Z   -150.318    0.229    0.029
RX      2.118    0.554    0.070

RY      2.697    0.929    0.117

RZ     -1.434    0.511    0.065

∆∆∆∆S     -5.380    1.871    0.236

Correlation_Matrix

[ 1.00 -0.00 -0.00 -0.00 -0.00  0.00 -0.00]

[-0.00  1.00  0.00  0.00  0.00 -0.00 -0.00]

[-0.00  0.00  1.00  0.00  0.00 -0.00 -0.00]

[-0.00  0.00  0.00  1.00  0.61 -0.47 -0.00]

[-0.00  0.00  0.00  0.61  1.00 -0.57 -0.00]

[ 0.00 -0.00 -0.00 -0.47 -0.57  1.00  0.00]

[-0.00 -0.00 -0.00  0.00  0.00 -0.00  1.00]
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•Finally, you see the 7 M-B parameters with the same EPSG data set.

•Notice that the translations are different and that both the unscaled and scaled SDs 

for the translations are much lower.

•Notice that the rotations and scale and their SDs are the same. In the M-B case, 

however, these rotations and scale have a very different geodetic interpretation.  

They are applied at the barycenter, not the geocenter. 

•Notice that the rotations are correlated, as highlighted in orange.

•The next step in this analysis (which I am not reporting) for either the Helmert or 

M-B model would be to test the significance of the rotation and scale parameters 

statistically and reject any that fail.  RY would be a good candidate.  We could then 

solve for a 6-p M-B.  Eliminating one rotation would lower the correlations.  

•That process could lead to a 3-p shift for German North Sea being the only 

mathematically-tenable shift given the geometry of the area and the quality of the 

data.  Just a thought and a topic for another presentation.  

•Really, the best approach is to work with the original survey data and eliminate the 

intermediate mathematical abstraction of the MREs, which hide the errors.

•If, on the other hand, the MREs are authoritative, then we should use the MREs.  
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Topics 

• Statement of the issues

• Geographicals to Cartesians to Geographicals

• Heuristic explanation of correlation problem

• The Molodensky Model at the geocenter (Helmert)

• The derivation of a 7-parameter shift

• Monte Carlo correlation w.r.t. datum area

• The Molodensky Model at the surface (M-B) solves 

correlation problem

• Dilution of Precision (P7DOP)

• Conclusion

• Reversibility in Molodensky-Badekas (Appendix)

•Our final topic is a quantification of the geometrical component of the Helmert 7-p 

formulation.
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Dilution of Precision

Evaluating Adjustment Geometry

•Earlier I asked how much surface area on the ellipsoid was required to provide 

good 7-p Helmert geometry.  

•What is the Helmert analogue to HDOP in horizontal positioning and GDOP in 

GPS?

•That analogue is P7DOP.
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Helmert 7-P Dilution of Precision

0

2222222 )(7 σσσσσσσσ SRZRYRXZYX baDOPP ∆∆∆∆ +++⋅⋅+++=

From the world of 7-p Helmert transformations

0

22 σσσ NEHDOP += 0

222 σσσσ UNEPDOP ++=

0

22222 σσσσσ TUNE cGDOP ⋅+++=

From the world of hydrography and GPS

•The concept of HDOP (“Horizontal Dilution of Precision”) has been used in radio-

navigation for decades.  It is the square root of the trace of the covariance matrix 

divided by a reference standard deviation.  Range quality (1m, 5m, 10m, whatever) 

times HDOP yields position error expressed as dRMS.  HDOP captures the 

geometrical component of position error, i.e., “angle of cut”.

•With GPS, the concept was expanded to 3 dimensions (east, north and up) to give 

PDOP (“Position DOP”) and and to 4 dimension (adding time, i.e., receiver clock 

uncertainty) to give GDOP (“Geometrical DOP”).  Notice that in GDOP the 

variance of time is multiplied by the speed of light squared for consistency of units 

and to relate clock uncertainty to position uncertainty.

•I applied that approach and now define P7DOP in the red box.  It is a measure of 

the geometrical component of parameter uncertainty in the position domain.  Notice 

that I multiply the rotation and scale variances (in radians and ppm respectively) by 

product of the ellipsoidal semi-axes to “map” these uncertainties to the surface.  

This is similar to the use of the speed of light in GDOP.  This is only an 

approximation since the rotations and scale map differently at different locations in 

the world.  But it’s a good approximation, and used relatively to compare the 

geometric component of differently-sized area, it’s excellent.
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2-D Angle of Cut Analogy
Evaluating Adjustment Geometry

30° HDOP=2.83 60° HDOP=1.63 90° HDOP=1.41

4 at 90° HDOP=1.00 6 at 60° HDOP=0.82

•To get a heuristic “feel” for these quantities here are several radio-navigation range 

configurations in the horizontal plane and their associated HDOPs.

•Notice that HDOP decreases as the angle of cut gets better and as additional ranges 

are added.

•Range error times HDOP gives dRMS.
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All GPS DOPs: Houston 2/14/04

•This GPS planning software shows H, P and GDOP in the Houston area two weeks 

ago.  

•My company requires a PDOP of less than 6 for seismic acquisition.  Notice the 

spike where that is exceeded.  

•The variation in the DOPs is due to the changing geometry of the GPS satellites 

and their setting and rising, i.e., the number of SVs in view.  
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7-Parameter Helmert
P7DOP by Area, Angle and Number of Points

% of Deg

World (+/-) 20 40 80 160 320

World 100 180 0.7 0.5 0.3 0.23 0.16

Hemisphere 50 90 1.0 0.7 0.5 0.3 0.2

Russia 3.35 21.1 3.1 2.1 1.5 1.0 0.7

Australia 1.51 14.1 4.5 3.1 2.2 1.5 1.1

India 0.64 9.2 7.0 4.8 3.3 2.3 1.6

Nigeria 0.18 4.9 13.1 9.0 6.2 4.4 3.1

Germany 0.07 3 21 14.6 10.2 7.1 5.0

Ger No Sea < 0.01 1.2 53 37 25.4 17.8 12.6

Cyprus 0.002 0.5 128 88 61 42.8 30.2

Number of Points
Area

P7DOP

•This slide takes a bit of explaining.  The numbers in color are P7DOPs for Helmert 

7-p derivations.  I like the ones in green, I don't like the ones in red, and I'm not so 

sure about the ones in between in blue. Those will depend on survey-point quality.  

But these are my judgements.  You need to make up your own minds.

•The "Area" column gives some representative countries of the world.  The "% of 

World" column gives the percentage of the entire surface area of the world that that 

country represents.  Next, I conceptualized that area as a spherical "cap" centered on 

the X axis in the Gulf of Guinea.  Then I computed the angle at the geocenter that, 

when rotated completely around the X axis, would circumscribe the "cap".  By way 

of further explanation, if you double that angle you would have the range of 

latitudes of the cap, the "diameter" of the cap.  Then, I populated the cap with 20, 

40, 80, 160 and 320 uniformly-distributed points and computed the covariance 

matrix.  From the covariance matrix I computed P7DOP using a reference SD of 1.  

Since, with small areas and fewer points, the P7DOP value fluctuates with different 

uniform distributions of points, I did this experiment more than 1,000 times in those 

cases and averaged.  When the area is larger and the number of points is greater, 

P7DOP is much more stable.

•The smaller the P7DOP, the better conditioned is the geometry of the Helmert 7-p 

derivation.  The red numbers demand either Molodensky-Badekas or perhaps even a 

3-p shift, certainly not Helmert.
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• Due to parametric correlation, Helmert 7-P 

derivations are global or large-area solutions.

• Small-area 7-P Helmert derivations result in 

statistically-insignificant parameters, however 

efficacious in practice.

• Molodensky-Badekas reduces correlations and 

increases significance in small areas.

• If our industry needs better small-area datum-

shift accuracy than 3 parameters provide, the 

APSG should support Molodensky-Badekas.

Conclusion

•(Read first three bullets.)

•During the ESRI Petroleum User’s Group meeting in Houston this week we heard 

that ESRI - in response to user demand - will support Molodensky-Badekas datum 

transformations in version 9.0 of their GIS product to be released this year.  

•Between the extremes of exceedingly-small areas (like Cyprus), where 3-p 

translations provide adequate “accuracy” (and which may be the only statistically-

defendable shift), and large-country or continental datums, where 7-p Helmert shifts 

are appropriate (but whose definitions we don’t really influence), our industry 

works in many intermediate areas wherein a M-B 7-p derivation may be the best 

solution.  I’ve given Angola’s Camacupa Datum as an example of a datum where 

multiple 3-p shifts might be replaced with one M-B 7-p shift.

•I encourage the APSG to go on record in support of industry software developers to 

provide M-B transformations in our acquisition and data-management applications.
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Appendices

• Reverse Molodensky-Badekas Equations

• Reverse M-B Numerical Assessment 1

• Reverse M-B Numerical Assessment 2

• Geographicals to Cartesians

• Cartesians to Geographicals

• References
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Forward Molodensky-Badekas

)'()'( uuSuuRuux −⋅∆+−⋅+∆+=

)'()'( uxSuxRuxur −⋅∆−−⋅−∆−=

])'())'(2()'([ 22
uSuuSuuuSRuuRuur ∆⋅∆−−⋅∆+∆+−⋅∆⋅⋅−−⋅+=

Reverse Molodensky-Badekas

•The matrix equation for the Molodensky Model for the NGA web site is presented 

again.  Now it is the M-B since the initial point is the barycenter, not the geocenter.

•The second equation on the top is the same, just in a more concise vector notation 

to save space.  The [X, Y, Z] vector is “x”.  The rotation matrix is “R”, and so on.

•The third equation, also in vector notation just above the equation in the red box, is 

the reverse M-B.  The LHS (left hand side), the “u_sub_r”, is intended to be the 

same “u” as the “u” in the second equation.  Notice that the third equation replaces 

the “u” of the RHS of the second equation with the “x” of the LHS of the second 

equation, which brings into the third equation the RHS of the second equation.  

Notice also that the signs of the “delta_u”, “R” and “delta_s” are reversed.

•For the Helmert formulation, “u_sub_r” equals “u”.  The Helmert is reversible.

•For the M-B formulation, “u_sub_r” equals “u” plus all the other terms in brackets 

in the fourth equation in the red box.  

•That’s the bad news.  The good news is that most of the terms in the brackets are 

very small, products of rotations in radians and scale changes in ppm that are 10^-6 

squared.  An EPSG Guidance Note makes this point very clearly.
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Round-Trip Error: Numerical Assessment 1

Dist km X dif m Y dif m Z dif m

146.56 ,   0.0020 ,  -0.0054 ,  -0.0090

79.22 ,   0.0020 ,  -0.0054 ,  -0.0091

63.48 ,   0.0021 ,  -0.0054 ,  -0.0091

54.42 ,   0.0021 ,  -0.0054 ,  -0.0091

182.60 ,   0.0022 ,  -0.0053 ,  -0.0091

193.61 ,   0.0022 ,  -0.0053 ,  -0.0091

141.44 ,   0.0022 ,  -0.0053 ,  -0.0091

57.33 ,   0.0021 ,  -0.0054 ,  -0.0091

66.45 ,   0.0021 ,  -0.0054 ,  -0.0091

155.94 ,   0.0021 ,  -0.0054 ,  -0.0092

180.01 ,   0.0020 ,  -0.0054 ,  -0.0091

180.93 ,   0.0020 ,  -0.0054 ,  -0.0091

144.05 ,   0.0022 ,  -0.0053 ,  -0.0091

102.29 ,   0.0022 ,  -0.0053 ,  -0.0091

15.08 ,   0.0021 ,  -0.0054 ,  -0.0091

75.51 ,   0.0021 ,  -0.0054 ,  -0.0091

46.36 ,   0.0021 ,  -0.0054 ,  -0.0091

87.70 ,   0.0021 ,  -0.0054 ,  -0.0091

126.00 ,   0.0020 ,  -0.0054 ,  -0.0091

Barycenter

X   =   3655727.05m 

Y   =    373465.14m  

Z   =   5194453.82m 

Lat =    54.905007d 

Lon =     5.833039d

Hgt = -1176.849142m

• ∆∆∆∆Xm

• ∆∆∆∆Ym

• ∆∆∆∆Zm

• RX”

• RY”

• RZ”

• ∆∆∆∆Sppm

• +700m

• -500m

• +200m

• -3”

• +5”

• -2”

• +3ppm

Fictitious  “Worst Case”

•To quantify the statement that these higher order terms are small, I present two 

numerical assessments of M-B round trip error, both using the fictitious “worst 

case” datum shift.

•Here are the results for 19 points around a barycenter in the German North Sea.

•The round-trip error in the X axis is 2mm, 5mm in the Y axis and 9mm in the Z 

axis.

•Note the distances from the barycenter in km.
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Round-Trip Error: Numerical Assessment 2

Dist km X dif m Y dif m Z dif m

412.33 ,  0.0020 ,  -0.0053 ,  -0.0088 

1544.86 ,  0.0028 ,  -0.0051 ,  -0.0093 

616.05 ,  0.0023 ,  -0.0054 ,  -0.0094 

1532.70 ,  0.0018 ,  -0.0050 ,  -0.0078 

1073.02 ,  0.0025 ,  -0.0052 ,  -0.0094 

750.19 ,  0.0017 ,  -0.0055 ,  -0.0089 

827.55 ,  0.0018 ,  -0.0053 ,  -0.0084 

848.43 ,  0.0023 ,  -0.0051 ,  -0.0087 

469.44 ,  0.0020 ,  -0.0053 ,  -0.0087 

1630.66 ,  0.0022 ,  -0.0059 ,  -0.0104   

1100.34 ,  0.0021 ,  -0.0050 ,  -0.0082 

1808.66 ,  0.0015 ,  -0.0052 ,  -0.0079   

2446.82 ,  0.0013 ,  -0.0057 ,  -0.0088 

1125.73 ,  0.0016 ,  -0.0057 ,  -0.0091 

154.16 ,  0.0020 ,  -0.0054 ,  -0.0091 

1811.03 ,  0.0029 ,  -0.0053 ,  -0.0100 

1780.19 ,  0.0029 ,  -0.0053 ,  -0.0102 

539.49 ,  0.0022 ,  -0.0054 ,  -0.0094 

1683.97 ,  0.0019 ,  -0.0059 ,  -0.0102 

Barycenter

X   =     6229725.66m

Y   =     -384479.16m

Z   =      -57315.84m

Lat =      -0.529766d

Lon =      -3.531637d

Hgt = -136544.205467m

• ∆∆∆∆Xm

• ∆∆∆∆Ym

• ∆∆∆∆Zm

• RX”

• RY”

• RZ”

• ∆∆∆∆Sppm

• +700m

• -500m

• +200m

• -3”

• +5”

• -2”

• +3ppm

Fictitious  “Worst Case”

•The second numerical assessment is for an area the size of Australia centered in the 

Gulf of Guinea.

•The results are only slightly larger even though the distances from the barycenter 

are considerably larger.

•Notice that the size of the parameters of the datum shift dominate the round-trip 

error, not the distance from the barycenter.

•This is a “worst-case” datum shift, larger than likely to be encountered in practice. 

Consequently, the round-trip error due to M-B mathematical irreversibility will be 

less in practice.
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Geographicals to Cartesians

Given ellipsoid1 semi-major axis (a) and flattening (f),

and latitude (φ),  longitude (λ), and height (h)

2
1

22 )sin1( φ
ν

e

a

−
=

λφν sincos)( hY +=

φν sin))1(( 2
heZ +−=

λφν coscos)( hX +=

faab ⋅−=
2222 )( abae −=

•These formulas for converting from geographicals to Cartesians and to 

geographicals again are for completeness and reference only.  

•I use Hoar’s notation on this slide, but the same equations can be found in

Bomford.

•“b” is the semi-minor axis of the ellipsoid. “e^2” is the eccentricity squared of the 

ellipsoid.  “nu” is the radius of curvature in the prime vertical.

•Given these intermediate quantities, we can solve for the Cartesian coordinates.
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Cartesians to Geographicals

Given ellipsoid2 a and f, and X, Y and Z Cartesians

faab ⋅−= 2222 )( abae −= 2222 )(' bbae −=

2
1
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•Cartesians to geographicals are only a bit more complex.

•These formulas are valid for any point on the surface of the earth.  A modification 

is required for points in space.

•“e’^2” is eccentricity prime squared.  “p” is the distance from the geocenter to the 

projection of our point in the equatorial plane.  
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