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Summary

Survey pre-analysis is as useful for determining the accuracy
of marine seismic assets (vessel, streamer, guns, tail buoy) as
it is for fixing those in land surveys. Marine assets (targets)
are connected by a variety of survey observations: gyrocom-
pass azimuths, cable compass azimuths, acoustic ranges,
laser ranges, angular measurements, streamer section lengths
between sensors, and latitude/longitude devices such as GPS.
These observations have reasonably well-known errors.
Survey pre-analysis converts observational errors into posi-
tional errors. Survey pre-analysis lets us quantify the relative
benefits of different, prospective deployments of navigation
sensors.

The horizontal midpoint (HMP) is itself not a target, but is
the average of the positions of a gun target and a streamer
target. In this paper I apply Gauss's law of covariance
propagation to elements of the pre-analysis (or actual)
covariance matrix to determine HMP error expressed as
variances and a covariance. Additionally, I demonstrate that
the HMP inline sigma (the square root of the inline vari-
ance) is at most the average of the inline sigmas of the res-
pective gun and source targets and can be as little as zero.
The same can be demonstrated for the crossline sigma.
Actual marine seismic configurations are pre-analyzed and
target and HMP accuracies are given.

Blunders, Biases and Random Errors

A navigational blunder is a discrete, "far out" error such as
a data "spike" due to a signal bounce or a dropped bit. A
bias is a smaller, systematic error such as might be intro-
duced by a poorly calibrated ranging device. The analysis in
this report assumes the absence of blunder and bias in all
navigation observations. It is the responsibility of one's
navigation experts to identify, quantify and eliminate blunder
and bias from the navigation solution. Random errors can
be identified, can be decreased as technology improves and
their effects minimized by good geometry; but random
errors cannot be eliminated. In this report I analyze the
impact of random error on target accuracy. Careless navi-
gation will always produce worse results than those modeled
herein.

Statistical accuracy and normally-distributed random error
are such related concepts that the terms are often inter-
changed. That a blunder-free, unbiased acoustic range is
accurate to ±1 meter at 95% confidence, for example, is
implied by the knowledge that its random error or sigma
(the square root of its variance) is 0.5 meters.

Survey Pre-analysis

The least-squares technique of variation of coordinates is a
best, linear, unbiased estimator (BLUE) of station coordi-
nates. Nowadays least squares is always weighted; that is,
observations are given weights based on their quality. Good
measurements contribute more to a solution than do poor
measurements. An observation's weight is the inverse of its
random variance, known either a priori (e.g., manufacturer's
specification) or a posteriori (by monitoring recent trends in
the data). The variation of coordinates technique propa-
gates observation errors into station position errors. The
benefit is that we can know the accuracy of our station coor-
dinates if we know the accuracy of our observations.

Least squares is intended to adjust real observations among
a network of real stations. We can, however, short-circuit
this real data requirement by adjusting artificial observations
which exactly fit our predetermined station coordinates.
Still, the variation of coordinates algorithm will propagate
typical observation errors into typical station errors. This
short-circuiting technique is called pre-analysis and is the ap-
proach taken in this paper to determine the accuracies of
marine seismic targets. Pre-analysis of different marine con-
figurations is easily performed with the appropriate software.

Dynamic navigation differs from static surveying in that sta-
tions are moving targets, variation of coordinates is often
replaced by a Kalman filter, and observations occur at irreg-
ular intervals. It is important to recognize that the Kalman
filter can actually be derived from a least squares approach
(see Krakiwsky, 1975). Although a Kalman filter will con-
tain transition equations and observations between states not
accommodated by the pre-analysis of this paper, most obser-
vations will be treated the same, even using the same obser-
vation equations. Survey pre-analysis is as close as we can
come to a snap-shot of achievable navigation accuracies
without throwing our hands up in despair over an infinitude
of possibilities.

Gauss's Law of Covariance Propagation

Consider the matrix equation

p-A-q, (1)

where p and q are stochastic vectors and A is their determi-
nistic relationship. If Cq is the covariance matrix of q, then
the covariance matrix of p (Cp) can be determined by the
relationship

(2)Cp-A C. -A'

This relationship is succinctly proven by Cross (1983).
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The HMP is the mean (Xm, YjJ of two target positions: a
source (Xs, YJ and a receiver (Xr, Yr) where X is taken to
be the inline coordinate and Y the crossline. HMP is repre-
sented by the matrix equation (1) where
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where the elements of Cq are elements of the larger covari-
ance matrix of the network adjustment rearranged compact-
ly. These elements may be determined in pre-analysis or in
the adjustment of actual data by least squares or by a
Kalman filter.

Now, by applying Gauss's law of covariance propagation we
find that the covariance matrix of the mean position (Cp) is
given by equation (2). The form of this matrix is
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The terms of equations (8), (9) and (10) define the accuracy
(or random error) of the HMP between the source and
receiver targets.

Upper and Lower Bounds of HMP
Inline and Crossline Error

Correlation is a measure of the statistical dependence
between two stochastic variables and varies between 1 and
-1. If AT and Y are stochastic variables, their correlation (p)
is defined by the relationship

P - °AT/ ( a x- °y ) - (11)

The covariance term (OXY) will take on the values of

(ax • aY), 0 and -(ax • aY) as p varies from 1 to 0 to -1.
With this knowledge and with equations (8) and (9) above,

we can compute the upper and lower bounds of ax and

av in terms of av , CY, av andav . We will do this for ay
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only, since ay follows similarly.
771

Repeating equation (8), we have
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When p = 1, equation (8) becomes
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In this case, av is the mean of aY and ay .
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When p = -1, equation (8) gives
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which can be 0 if av = av ; aY will always be less than
xs xr Am

the mean of CT and a .

When p = 0, perhaps a more typical case,

2 / 2 2 \ A
°xm - K, + °x\ 4»

*• \ *l

or

Ov -
(17)

ay is also always less than the mean value, since if we
2increase the ax of equation (16) by (ax • ax I 2), we get

equation (12), which is the mean.

Modeled Configurations

In the dual-cable, dual-source configurations pre-analyzed in
this paper, the following one sigma errors are assumed.

Vessel navigation:
Buoy navigation:
Gyro compass:
Cable compasses:
Cable section length:
All acoustic ranges:

Tail rope compass:
Tail rope length:

2.0 meters in X/Y (uncorrelated)
3.0 meters in X/Y (uncorrelated)
0.7 degrees
0.5 degrees
0.1 meters
0.2 meters ± 1000 ppm, or
0.5 meters
6.0 degrees
3.0 meters

It is important to note that the cables are 4800 meters with
12 evenly distributed compasses, the cable separation is 200
meters with a 300 meter step-back, the source separation is
100 meters with a 150 meter step-back, the tail buoy lead-in
ropes are 100 meters, the front-end acoustic positioning sys-
tem hull receiver baseline is 34 meters and the fore hull re-
ceiver is taken to be the navigation antenna position. These
geometrical factors also affect error propagation.

The configurations consist of the following navigation
options:

(1) Front-end acoustics and cable compasses,
(2) Option (1) plus tail buoys,
(3) Option (2) plus tail acoustics,
(4) Option (3) plus head acoustics,
(5) Option (4) plus sparse cable acoustics,
(6) Option (5) plus network cable acoustics,
(7) Option (3) plus head buoy,
(8) Option (7) plus sparse cable acoustics,
(9) Option (8) plus network cable acoustics.

Front-end acoustics consist of hull-mounted receivers, near-
vessel pingers and pinger ranges to the guns and streamer
heads. Tail acoustics are ranges in the configuration of a
braced quadrilateral connecting the tail buoys to the end of

the cable. Head acoustics are a braced quadrilateral of
ranges between the head of the cables and the head of the
stretch section including compass constraints. A head buoy
is a navigation buoy, similar to a tail buoy, towed between
the guns and the heads of the cables. Sparse cable acoustics
are cross-cable ranges at 1200, 2400, and 3600 meters.
Network cable acoustics are connected braced quadrilaterals
every 400 meters from the head to the end of the cable.

Results

Of all the data that could be reported, only the poorest (that
is, the least accurate) source and cable target (receiver)
inline and crossline sigmas and the inline and crossline
sigmas of the connecting HMP are given below. Covariance
terms are not given. Numbers are in meters.

Option

1

2

3

4

5

6

7

8

9

Source

in

2.4

2.0

1.8

1.6

1.6

1.6

1.4

1.4

1.4

cross

5.2

4.3

3.9

2.3

2.3

ZO

2.0

2.0

1.8

Receiver

in

3.1

2.4

2.0

1.6

1.6

1.5

1.7

1.7

1.4

cross

14.6

8.7

6.5

6.3

5.0

2.6

6.3

5.0

2.5

HMP

in

2.0

1.5

1.3

1.1

1.1

1.1

1.1

1.1

1.0

cross

7.7

4.8

3.8

3.3

2.8

1.6

3.3

2.7

1.5

Conclusions

As expected, increasingly more elaborate deployments of
navigational sensors do decrease target errors. It is also
seen that the HMP error is always less than the worse con-
necting target error and, in some configurations, is less than
either of the connecting target errors. This unintuitive result
has been demonstrated mathematically. The HMP may be
a more geophysically-meaningful index of navigational effica-
cy than target accuracy.
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